\(\int \frac {\cos (c+d x) \sin ^3(c+d x)}{(a+a \sin (c+d x))^3} \, dx\) [242]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 74 \[ \int \frac {\cos (c+d x) \sin ^3(c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {3 \log (1+\sin (c+d x))}{a^3 d}+\frac {\sin (c+d x)}{a^3 d}+\frac {1}{2 a d (a+a \sin (c+d x))^2}-\frac {3}{d \left (a^3+a^3 \sin (c+d x)\right )} \]

[Out]

-3*ln(1+sin(d*x+c))/a^3/d+sin(d*x+c)/a^3/d+1/2/a/d/(a+a*sin(d*x+c))^2-3/d/(a^3+a^3*sin(d*x+c))

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 74, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {2912, 12, 45} \[ \int \frac {\cos (c+d x) \sin ^3(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {\sin (c+d x)}{a^3 d}-\frac {3}{d \left (a^3 \sin (c+d x)+a^3\right )}-\frac {3 \log (\sin (c+d x)+1)}{a^3 d}+\frac {1}{2 a d (a \sin (c+d x)+a)^2} \]

[In]

Int[(Cos[c + d*x]*Sin[c + d*x]^3)/(a + a*Sin[c + d*x])^3,x]

[Out]

(-3*Log[1 + Sin[c + d*x]])/(a^3*d) + Sin[c + d*x]/(a^3*d) + 1/(2*a*d*(a + a*Sin[c + d*x])^2) - 3/(d*(a^3 + a^3
*Sin[c + d*x]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2912

Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)
])^(n_.), x_Symbol] :> Dist[1/(b*f), Subst[Int[(a + x)^m*(c + (d/b)*x)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[
{a, b, c, d, e, f, m, n}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {x^3}{a^3 (a+x)^3} \, dx,x,a \sin (c+d x)\right )}{a d} \\ & = \frac {\text {Subst}\left (\int \frac {x^3}{(a+x)^3} \, dx,x,a \sin (c+d x)\right )}{a^4 d} \\ & = \frac {\text {Subst}\left (\int \left (1-\frac {a^3}{(a+x)^3}+\frac {3 a^2}{(a+x)^2}-\frac {3 a}{a+x}\right ) \, dx,x,a \sin (c+d x)\right )}{a^4 d} \\ & = -\frac {3 \log (1+\sin (c+d x))}{a^3 d}+\frac {\sin (c+d x)}{a^3 d}+\frac {1}{2 a d (a+a \sin (c+d x))^2}-\frac {3}{d \left (a^3+a^3 \sin (c+d x)\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.95 \[ \int \frac {\cos (c+d x) \sin ^3(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {-12 \log (1+\sin (c+d x))+4 \sin (c+d x)+\frac {-9-10 \sin (c+d x)}{(1+\sin (c+d x))^2}+\frac {\sin ^2(c+d x)}{(1+\sin (c+d x))^2}}{4 a^3 d} \]

[In]

Integrate[(Cos[c + d*x]*Sin[c + d*x]^3)/(a + a*Sin[c + d*x])^3,x]

[Out]

(-12*Log[1 + Sin[c + d*x]] + 4*Sin[c + d*x] + (-9 - 10*Sin[c + d*x])/(1 + Sin[c + d*x])^2 + Sin[c + d*x]^2/(1
+ Sin[c + d*x])^2)/(4*a^3*d)

Maple [A] (verified)

Time = 0.34 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.68

method result size
derivativedivides \(\frac {\sin \left (d x +c \right )-\frac {3}{1+\sin \left (d x +c \right )}-3 \ln \left (1+\sin \left (d x +c \right )\right )+\frac {1}{2 \left (1+\sin \left (d x +c \right )\right )^{2}}}{d \,a^{3}}\) \(50\)
default \(\frac {\sin \left (d x +c \right )-\frac {3}{1+\sin \left (d x +c \right )}-3 \ln \left (1+\sin \left (d x +c \right )\right )+\frac {1}{2 \left (1+\sin \left (d x +c \right )\right )^{2}}}{d \,a^{3}}\) \(50\)
parallelrisch \(\frac {\left (6 \cos \left (2 d x +2 c \right )-24 \sin \left (d x +c \right )-18\right ) \ln \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-12 \cos \left (2 d x +2 c \right )+48 \sin \left (d x +c \right )+36\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+9 \cos \left (2 d x +2 c \right )-15 \sin \left (d x +c \right )+\sin \left (3 d x +3 c \right )-9}{2 d \,a^{3} \left (-3+\cos \left (2 d x +2 c \right )-4 \sin \left (d x +c \right )\right )}\) \(128\)
risch \(\frac {3 i x}{a^{3}}-\frac {i {\mathrm e}^{i \left (d x +c \right )}}{2 d \,a^{3}}+\frac {i {\mathrm e}^{-i \left (d x +c \right )}}{2 d \,a^{3}}+\frac {6 i c}{d \,a^{3}}-\frac {2 i \left (-3 \,{\mathrm e}^{i \left (d x +c \right )}+5 i {\mathrm e}^{2 i \left (d x +c \right )}+3 \,{\mathrm e}^{3 i \left (d x +c \right )}\right )}{d \,a^{3} \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )^{4}}-\frac {6 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{d \,a^{3}}\) \(134\)
norman \(\frac {\frac {6 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d a}+\frac {6 \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {110 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {110 \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {156 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {156 \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {24 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {24 \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {192 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {192 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {56 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {56 \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4} a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}-\frac {6 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d \,a^{3}}+\frac {3 \ln \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d \,a^{3}}\) \(303\)

[In]

int(cos(d*x+c)*sin(d*x+c)^3/(a+a*sin(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

1/d/a^3*(sin(d*x+c)-3/(1+sin(d*x+c))-3*ln(1+sin(d*x+c))+1/2/(1+sin(d*x+c))^2)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.28 \[ \int \frac {\cos (c+d x) \sin ^3(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {4 \, \cos \left (d x + c\right )^{2} - 6 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \sin \left (d x + c\right ) - 2\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (\cos \left (d x + c\right )^{2} + 1\right )} \sin \left (d x + c\right ) + 1}{2 \, {\left (a^{3} d \cos \left (d x + c\right )^{2} - 2 \, a^{3} d \sin \left (d x + c\right ) - 2 \, a^{3} d\right )}} \]

[In]

integrate(cos(d*x+c)*sin(d*x+c)^3/(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

1/2*(4*cos(d*x + c)^2 - 6*(cos(d*x + c)^2 - 2*sin(d*x + c) - 2)*log(sin(d*x + c) + 1) + 2*(cos(d*x + c)^2 + 1)
*sin(d*x + c) + 1)/(a^3*d*cos(d*x + c)^2 - 2*a^3*d*sin(d*x + c) - 2*a^3*d)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 303 vs. \(2 (63) = 126\).

Time = 0.72 (sec) , antiderivative size = 303, normalized size of antiderivative = 4.09 \[ \int \frac {\cos (c+d x) \sin ^3(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\begin {cases} - \frac {6 \log {\left (\sin {\left (c + d x \right )} + 1 \right )} \sin ^{2}{\left (c + d x \right )}}{2 a^{3} d \sin ^{2}{\left (c + d x \right )} + 4 a^{3} d \sin {\left (c + d x \right )} + 2 a^{3} d} - \frac {12 \log {\left (\sin {\left (c + d x \right )} + 1 \right )} \sin {\left (c + d x \right )}}{2 a^{3} d \sin ^{2}{\left (c + d x \right )} + 4 a^{3} d \sin {\left (c + d x \right )} + 2 a^{3} d} - \frac {6 \log {\left (\sin {\left (c + d x \right )} + 1 \right )}}{2 a^{3} d \sin ^{2}{\left (c + d x \right )} + 4 a^{3} d \sin {\left (c + d x \right )} + 2 a^{3} d} + \frac {2 \sin ^{3}{\left (c + d x \right )}}{2 a^{3} d \sin ^{2}{\left (c + d x \right )} + 4 a^{3} d \sin {\left (c + d x \right )} + 2 a^{3} d} - \frac {12 \sin {\left (c + d x \right )}}{2 a^{3} d \sin ^{2}{\left (c + d x \right )} + 4 a^{3} d \sin {\left (c + d x \right )} + 2 a^{3} d} - \frac {9}{2 a^{3} d \sin ^{2}{\left (c + d x \right )} + 4 a^{3} d \sin {\left (c + d x \right )} + 2 a^{3} d} & \text {for}\: d \neq 0 \\\frac {x \sin ^{3}{\left (c \right )} \cos {\left (c \right )}}{\left (a \sin {\left (c \right )} + a\right )^{3}} & \text {otherwise} \end {cases} \]

[In]

integrate(cos(d*x+c)*sin(d*x+c)**3/(a+a*sin(d*x+c))**3,x)

[Out]

Piecewise((-6*log(sin(c + d*x) + 1)*sin(c + d*x)**2/(2*a**3*d*sin(c + d*x)**2 + 4*a**3*d*sin(c + d*x) + 2*a**3
*d) - 12*log(sin(c + d*x) + 1)*sin(c + d*x)/(2*a**3*d*sin(c + d*x)**2 + 4*a**3*d*sin(c + d*x) + 2*a**3*d) - 6*
log(sin(c + d*x) + 1)/(2*a**3*d*sin(c + d*x)**2 + 4*a**3*d*sin(c + d*x) + 2*a**3*d) + 2*sin(c + d*x)**3/(2*a**
3*d*sin(c + d*x)**2 + 4*a**3*d*sin(c + d*x) + 2*a**3*d) - 12*sin(c + d*x)/(2*a**3*d*sin(c + d*x)**2 + 4*a**3*d
*sin(c + d*x) + 2*a**3*d) - 9/(2*a**3*d*sin(c + d*x)**2 + 4*a**3*d*sin(c + d*x) + 2*a**3*d), Ne(d, 0)), (x*sin
(c)**3*cos(c)/(a*sin(c) + a)**3, True))

Maxima [A] (verification not implemented)

none

Time = 0.19 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.96 \[ \int \frac {\cos (c+d x) \sin ^3(c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {\frac {6 \, \sin \left (d x + c\right ) + 5}{a^{3} \sin \left (d x + c\right )^{2} + 2 \, a^{3} \sin \left (d x + c\right ) + a^{3}} + \frac {6 \, \log \left (\sin \left (d x + c\right ) + 1\right )}{a^{3}} - \frac {2 \, \sin \left (d x + c\right )}{a^{3}}}{2 \, d} \]

[In]

integrate(cos(d*x+c)*sin(d*x+c)^3/(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/2*((6*sin(d*x + c) + 5)/(a^3*sin(d*x + c)^2 + 2*a^3*sin(d*x + c) + a^3) + 6*log(sin(d*x + c) + 1)/a^3 - 2*s
in(d*x + c)/a^3)/d

Giac [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.76 \[ \int \frac {\cos (c+d x) \sin ^3(c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {\frac {6 \, \log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right )}{a^{3}} - \frac {2 \, \sin \left (d x + c\right )}{a^{3}} + \frac {6 \, \sin \left (d x + c\right ) + 5}{a^{3} {\left (\sin \left (d x + c\right ) + 1\right )}^{2}}}{2 \, d} \]

[In]

integrate(cos(d*x+c)*sin(d*x+c)^3/(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

-1/2*(6*log(abs(sin(d*x + c) + 1))/a^3 - 2*sin(d*x + c)/a^3 + (6*sin(d*x + c) + 5)/(a^3*(sin(d*x + c) + 1)^2))
/d

Mupad [B] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.80 \[ \int \frac {\cos (c+d x) \sin ^3(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {\sin \left (c+d\,x\right )}{a^3\,d}-\frac {3\,\ln \left (\sin \left (c+d\,x\right )+1\right )}{a^3\,d}-\frac {3\,\sin \left (c+d\,x\right )+\frac {5}{2}}{a^3\,d\,{\left (\sin \left (c+d\,x\right )+1\right )}^2} \]

[In]

int((cos(c + d*x)*sin(c + d*x)^3)/(a + a*sin(c + d*x))^3,x)

[Out]

sin(c + d*x)/(a^3*d) - (3*log(sin(c + d*x) + 1))/(a^3*d) - (3*sin(c + d*x) + 5/2)/(a^3*d*(sin(c + d*x) + 1)^2)